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Anomalous diffusion induced by a Mittag-Leffler correlated noise
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We introduce a Mittag-Leffler correlated random force leading to anomalous diffusion. Starting from a
generalized Langevin equation, and using Laplace analysis we derive exact expressions for the mean values,
variances and diffusion coefficient for a free particle in terms of generalized Mittag-Leffler functions and its
derivatives. The asymptotic behavior of these quantities are obtained, from which the anomalous diffusion

behavior of the particle is displayed.
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Anomalous diffusion, which has been observed in disor-
dered media and other complex systems, has been the subject
of numerous investigations in the last years, both experimen-
tal and theoretical [1]. In one dimension and in the absence
of an external driving force, anomalous diffusion is charac-
terized by the occurrence of a mean square displacement of
the form (X?(¢)) ~ #¢, which deviates from the linear Brown-
ian dependence on time. According to the value of the
anomalous diffusion exponent &, one distinguishes slow or
subdiffusion (0<£<1), and enhanced or superdiffusion (&
>1). The modeling of such anomalous diffusing stochastic
processes has mainly been done within the framework of the
fractional kinetic equation approach [1,2] and the general-
ized Langevin equation (GLE) approach [3-6]. This last ap-
proach has been used recently in the description of diverse
anomalous diffusion phenomena, such as conformational
fluctuations within a single protein molecule [7,8], reaction
kinetics of single enzymes [9], and nuclear fusion reactions
[10]. The GLE is a nonlocal equation that, in the absence of
a deterministic field, can be written in the form

X() + ftdt'y(t—t')X(t’) =F(1), (1)

0

where X(z) represents the position of a particle of mass m
=1 at time ¢, y(¢) is the dissipative memory kernel, and F(z)
is a zero-centered Gaussian and stationary random force. The
correlation function of the random force obeys the
fluctuation-dissipation theorem

(FOF(t")y=C(|t—1t'|) =kgTy(|t -

), 2)

where kjp is the Boltzmann constant, and 7T is the absolute
temperature of the environment.

The solution of the GLE (1) can be obtained by means of
the Laplace transformation technique [3,4],

t

X(1) =(X(@)) + J dt'G(t—1")F(1'), (3)

0
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X(1) = (X)) + f dr'g(t—t")F(t'), 4)
0
where
(X(1)) =x0 +vG(1), (5)
(X(1)y = vog (1), (6)

being x,=X(r=0) and vy=X(r=0) the (deterministic) initial
position and velocity of the particle. The relaxation function
G(¢) is the inverse form of the Laplace transform

A 1

Gls) = 2+ 3(s)s’

()

where (s) is the Laplace transform of the dissipative
memory kernel. The relaxation function g(z) is the derivative
of G(7), i.e., g(t)=G'(t). Hence

1
s+ Hs)

and from Eqgs. (3) and (4) it follows that G(0)=0 and g(0)
=1.
Explicit expressions of the variances are given by [4]

8(s) = (8)

(1) = kpT[21(2) - G*(0)], )
(1) = kpT[1 = g*(1)], (10)
T(0) = kTG 1 - g(1)], (11)
where
1(r) = JO dr' G(t"). (12)

Alternatively, the second moments read as
(X2(1)) = x} + (0§ — kgT)G*(1) + 2k TI(1) + 2xv(G (1),
(13)

(X*(1)) = kT + (v§ — kgT)g™(1). (14)

It is well known that if the correlation function (2) is a
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Dirac delta function, the stochastic process is Markovian and
its dynamics can be straightforwardly obtained [11]. How-
ever, in order to describe the non-Markovian dynamics of an
anomalously diffusing particle one must take into account
the memory effects through a long-time tail noise. In particu-
lar, a power-law correlation function is usually employed to
model the anomalous diffusion processes [5,6,12—14]. In this
paper, we propose a more general correlation function mod-
eled as

C(t) = CoMN) (D E\[- (|t|/ D], (15)

where 7 acts as a characteristic memory time and Cy(\) is a
proportionality coefficient dependent on the exponent \ but
independent of time. The exponent \ can be taken as 0 <\
<2, which is determined by the dynamical mechanism of the
physical process considered. The E,(y) function denotes the
Mittag-Leffler function [15] defined through the series

o

By =S 2

a>0. (16)
oo Maj+ 1)’

In what follows we only deal with times #=0. Then, we
omit the modulus in the argument of functions for simple
notational convenience.

From the asymptotic behaviors of the Mittag-Leffler func-
tion [16] one easily can deduce that, for A # 1, the correlation
function (15) behaves as a stretched exponential for short
times and as an inverse power law in the long time regime. It
is worth pointing out that the function E,(-") exhibits dif-
ferent behaviors depending on the value of \ [16]. If 0<A
<1, E\(-1") is a completely monotone function and tends to
zero from above as 7 tends to infinity. If 1<\ <2, E\(-")
can be decomposed in a completely monotone function
which tends to zero from below as ¢ tends to infinity plus an
oscillatory contribution with an exponentially decreasing
amplitude. On the other hand, setting A=1 the correlation
function (15) reduces to an exponential form which describes
a standard Ornstein-Uhlenbeck process [11].

Note that in the limit 7— 0 the proposed correlation func-
tion (15) reproduce a power-law correlation function

C(t) = Co(MN™MT(1 =N), (17)

which has been obtained introducing the asymptotic behavior
at large y of the Mittag-Leffler function [16]

El(=y) ~ DI -l

in expression (15). Moreover, taking the limit A— 1 in Eq.
(17) and using the formal representation of the generalized
Dirac delta [17] we obtain

y>0 (18)

C@1) = Co(1) 1), (19)

which corresponds to a white noise, nonretarded friction, and
standard Brownian motion [11].

Now we obtain analytical expressions for the kernels 1(z),
G(1), and g(r), for A # 1 assuming that the autocorrelation
function is of the form (15). From (2), the memory kernel
v(t) can be written as
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Y1) = WE= (DM, (20)

where v, =Cy(N)/kgT.
Then, its Laplace transform reads [16]

-1
= 21
W) = 1 REwY (21)
Thus the kernel integral I(¢) is the Laplace inversion of
. G(s) - .
I(s) = - o(s) +1;(s), (22)
where
_17)\
. s
I(s)=————5—, 23
()(S) 7”s2 + sz_)\ + 3 ( )

1,(s) = 7As7M(s). (24)
Using the recipes given in Ref. [18] we get

1y(1) = 2( (Zﬁ) PEVES aol= WM, (29)

_ 1)k
L(1) = (I/T))\E Ch (Z;\) 2(k+1)E§\k)3+>\+(2->\)k[— (/7M.
k=0

(26)

where E, 4(y) is the generalized Mittag-Leffler function [15]
defined by the series expansion

[

yj
E, /)= —"—— a>0, B>0, (27)
» j=0 F(aJ + ,8)
and Eiy’f)ﬁ(y) is the derivative of the Mittag-Leffler function
o G+
EQy(y) = —Ea sy) = E . (28)

S /0 (ali+k)+p)

The kernels G(r) and g(¢) can be calculated using the
relation [18]

d
dt[ (o B~ lE(k) ( )] = k- 2E ( %), (29)

Then G(1)=G(1)+G,(t) where

k
Go(1) = 2 € (Z;\) 12k+lE§\k,)2+(2—>\)k[‘ DM, (30)
k=0

ok
G(t)= (l/T))‘kZO( b (3}) 2kJ'IE(kz+x+(2 o= (M,

(31)
and g(r)=g(t)+g,(r), where

=30 k,) (%) PES o= DN, (32)
k=0 :
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g1(t) = (f/T)KZ - <7_>\) 2kE(k)1+x+(2 o= (7M.
k=0

(33)

The analytical expressions (25), (26), and (30)—(33) are
the main result of this work. They fully determine the tem-
poral evolution of the mean values of the position and the
velocity as well as the variances of the process.

Now we analyze the behavior of the kernels I(z), G(z), and
g(2) at times larger than the noise characteristic time 7. This
can be achieved introducing the asymptotic behaviors of the
generalized Mittag-Leffler function [18]

1
Ea,ﬂ(_y)wyl—‘(ﬂ_a)’ y>07 (34)
and its derivative
1
E(kB( y)~ (= )k = m (35)

in Egs. (25) and (26). After some algebra, we obtain for ¢
>,

(0>},

(36)

A
1(1) = PE; , i[— (0,0) M+ —{1-E,\[-
oy

where (wy)*™=7,. With the help of relation (29), the
asymptotic expressions for G(¢) and g(r) are given by

™ d
G(1) = 1By o= (0p0)* ] - —;Ez A= (@031)* ],
M

(37)

> &

g(t) = E,_\[- (‘UAZ)2 M-— d2 —Er\[- (wxf)z M. (38)

It is worth pointing out that the expansion used to obtain
Egs. (36)—(38) naturally introduces the characteristic time
). Note that the first three terms of the right-hand side of
Egs. (36)—(38), which come from I,(r), G,(¢), and g,(7), re-
spectively, correspond to the exact expressions for the ker-
nels obtained in the case of a pure power-law correlation
function [5,6,13,14,19]. On the other hand, the other three
terms come from the behavior of the correlation function at
intermediate times 7<t< ).

Now we consider the evolution of the second moment
(14) in the intermediate time interval. Without loss of gener-
ality we suppose that x,=0 and the thermal equilibrium con-
dition v(2)=kBT. In this case, from Eq. (13) we obtain

(X%(1)) = 2kpTI(t). (39)

Then, the diffusive behavior is completely established by the
time behavior of the integral kernel I(r). For times > 7 we
obtain
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(X*(1)) = 2kgTE,_ 5[— (w0,)* ]
A
+2kpT—{1 = E,,\[- (o) ]} (40)
§oN

In this situation, the time-dependent diffusion coefficient, de-
fined by [5]

1d
D(t) = ——(X*(1)), 41
(1) 2dt< (1) (41)
can be written as

™ d
D(t) = kgTtE,_\ o[~ (0\)* ™ = kgT——E,_\[- (wy)*™].
'}/)\ dt

(42)

It is worth pointing out that in this intermediate time interval
(r<t< w{l) the diffusion coefficient exhibits an additional
term in relation to the expression given in Ref. [5] for a pure
power-law correlation function.

In what follows we analyze the behavior of the kernels at
times larger than the characteristic time w)'. Taking into ac-
count that E,(y)=E,(y), one can use again the asymptotic
behavior of the generalized Mittag-Leffler function (34) for
wyt>1 to obtain

10~ 0 (i o (43)
t}\—l

G(t) = ST (44)
02)

g(n) =~ STO—1) (45)

Introducing these asymptotic expansions into Egs. (9)—(11)
we can realize that these expressions correspond to the
asymptotic variances obtained with the kernel (17), previ-
ously reported in Refs. [5,13,14]. In particular,

Y I P
(X*(1)) = kBT’y)\l—‘()\ n 1)t (46)
and
1 )\—1
D(t) = kT T O\) (47)

showing that, for w,#> 1, the particle motion is subdiffusive
for 0 <A <1 and superdiffusive for 1 <A <2. These results
are in agreement with those obtained in Ref. [20], where it is
shown that for every noise kernel that behaves as ™ for long
times, the diffusion coefficient behaves as 1.

Finally, we want to discuss some issue related to the mi-
croscopic origin of the proposed noise. To address this point
one can suppose that the random force F(z) has its origin in
a thermal bath composed of harmonic oscillators. In this situ-
ation the dissipative memory kernel is usually described in
the continuous limit by the reservoir spectral density J(w)

[21],
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) = gf“ Jw) cos(wt)dw. (48)
m™J w

Inserting the integral representation [22]

% A1
Er-) = 727 sin(hn/2) o 1+ 2(1()1;‘ cosc(o)\sf;;)))+ o™ .
(49)
in the expression (20) it follows that
J(w) = o f(wr), (50)
where f,. is the cutoff function
F=m sin(A7/2) 51)

1+ 2x" cos(N7/2) + x2N
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The function f. is a high-frequency cutoff function of
typical width 77!, Then, the proposed noise can be consider
as a special case of non-Ohmic models [21].

In summary, we have proposed and realized a Mittag-
Leffler correlated noise which can lead to anomalous diffu-
sion. For certain values of the parameters that characterize
this noise one can reproduce a power-law correlation func-
tion, an exponential one and a white noise. The dynamics of
the particle can be explicitly obtained in analytical form and
shows several different behaviors compared with previous
results based on white and other colored noises.
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